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ABSTRACT 
A general numerical method for finding the steady state solution of a cyclic system is presented. The method 
determines the initial values by enforcing the conditions of periodicity. In this way the initial value is found 
by integrating through only one cycle, often resulting in a considerable saving of computing effort. The 
method is applicable to any linear discrete set of difference equations with periodic parameters and forcing 
functions. The application of the method to a single pole representation of heat flow in buildings is 
demonstrated. 
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INTRODUCTION 

Cyclic systems are often encountered in heat transfer and fluid flow. Some examples are cyclic 
combustion, rotating machines, cyclic flow in cardiovascular circulation, and any system 
subjected to the diurnal outdoor environment, e.g. buildings. In these systems, the periodicity 
might arise from periodic boundary conditions, periodic forcing functions, periodic system 
parameters or combinations of these. Under cyclic conditions a steady state response will 
eventually arise where the solution of the system also becomes periodic. In many cyclic problems 
this steady state solution is of interest rather than the initial transient. For instance, in the 
analysts of heat transfer in buildings no initial conditions for the climatic forcing functions are 
specified, instead the problem is uniquely determined by the requirement of a periodic solution. 
In other problems, e.g. the problem of heat transfer in ducts having periodic variations of the 
cross-sectional area, as treated in Reference 1, it is convenient to neglect the initial region where 
conditions are not fully developed. 

In the solution of initial value problems a simple finite difference method is often used which 
finds the evolution of the system by a marching algorithm. Although this method is not very 
accurate, it is simple, fast and requires only modest storage space. However, if the time dependency 
is cyclic the initial value problem becomes a boundary value problem, and the marching algorithm 
cannot be used; the system must be solved at once for all time steps. This leads to a finite 
difference method which requires the solution of a large number of simultaneous equations for 
accurate results. 

Other methods for solving boundary value problems include the popular shooting methods 
and variational methods2. Shooting methods use an arbitrary guess of the initial value, then 
integrate through a cycle, determine an updated initial value—usually through the secant 
method—and then integrate through another cycle until convergence is achieved. In case of a 
linear system the shooting method will converge after integrating through two cycles2. 
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In this paper, a finite difference method is presented which determines the initial period after 
effectively integrating through just one cycle. The need for the solution of a large system of 
equations, which the finite difference method (as applied to cyclic systems) requires, is thus 
circumvented. The method appears to be a generalization of the cyclic tridiagonal matrix 
algorithm1. 

The method has been successfully applied to thermoflow networks of buildings with time 
variable parameters. In addition it is applicable to a very wide range of problems in numerical 
analysis of heat transfer, fluid flow etc. All cyclic phenomena, e.g. reciprocating machines, rotary 
machines, vortex shedding, flow with periodic boundaries etc. are likely candidates if the 
equations are linear or can be linearized. 

DESCRIPTION OF THE METHOD 
We assume a discrete linear system of the form: 

xk + 1 = Ak· xk + uk (1) 
where Ak is a square matrix which does not depend on xk. The vector uk is the input to the 
system which is described by the vector of state variables xk. The index k=0, 1, 2… N runs over 
the periodic independent variable. It is assumed that the system (1) is stable and that the input 
and system parameters are periodic with respect to the index k, with period N, and that the 
steady periodic solution is required. Thus A0=AN, u0=uN and x0 = xN. Note that a system 
which is period in more than one independent variable can fit into this scheme with N given 
by the least common multiple of the periods of the independent variables. An example of such 
a doubly periodic problem is pulsating flow through a regular structure or flow through structures 
which are regular in two dimensions. If the transition matrix Ak is independent of k the problem 
is amenable to solution via Fourier series methods. However, even in this case the numerical 
method proposed here might still be advantageous. 

In (1) the complete solution is obtained after N — 1 recursions, provided an initial value is 
known. This can be obtained in a straightforward manner. Starting with x0= xN and after N 
substitutions from (1) it is found that the only unknown which remains is x0. e.g. 

x0 = xN = AN - 1 · xN - 1 + UN - 1 

= AN - 1(AN - 2· xN - 2 + uN - 2)+uN - 1 

= AN - 1(AN - 2(AN - 3(…A1(A0x0 + u0) + u1…) + uN - 2) + uN - 1 (2) 
In (2) the only unknown is x0 which is obtained from: 

(3) 

In (3), equation (1) is effectively iterated through one cycle to determine the initial value. The 
complete solution is obtained by solving for x0 from (3) and then iterating (1) through one more 
cycle. It requires 2(N – 1) products and one inversion. Note that the restriction to linear systems 
is required in order to solve x0 from (2), A must not be dependent on x0. When programming 
(3) advantage can be taken of the fact that the product expression occurs on both sides of the 
expression, by starting with the highest value of k and counting down instead of up and storing 
at each step k the partial sum and the partial product, the product expression can be successively 
constructed for every term in the sum. 

Sometimes the discrete system takes the implicit form: 
Bk + 1· xk + 1– Ck · xk = vk + 1 (4) 

with Bk and Ck square matrices. Equation (4) may be reduced to the form of (1) by the 
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transformation: 
Ak = · Ck , uk= ·vk + 1 (5) 

The time dependent implicit system requires a matrix inversion at each step, however, for time 
invariant systems the inversion need only be performed once. Note that because the system is 
periodic, it is also possible to march backward in time with a similar solution scheme. 

The solution for the initial value (3) enforces the cyclic condition x0 = xN on the discrete system 
so that any discretization error in (1) at k=N will equal the error at k = 0. The cyclic condition 
is enforced even if the discrete system is weakly unstable, as long as the product ∏ Ak remains 
finite. This inherent robustness and error propagation control are decided advantages of the 
cyclic assumption and a good reason for using cyclic models whenever feasible. 

Of the discrete models (1) or (4) are derived from a discrete approximation of a continuous 
system, the sampling interval ill normally be contained in the matrices Ak or Bk and Ck. Since 
it is assumed that these matrices are dependent on k, it is allowable to vary the sampling interval 
during the iteration, provided the time steps are selected initially. Equation (3) may also be used 
to find a good first guess of the initial value for a more accurate shooting method. 

APPLICATION 
The form of the discrete system (1) or (4) is typical of systems which evolve with time, i.e. 
continuous systems which contain a first order time derivative term, so that k + 1 in (1) and (4) 
refers to a discretization of the time axis. For this reason it is foreseen that the method will mostly 
find application in systems where the periodic independent variable is time. In this section we 
demonstrate the application to such a first order continuous system. 

A highly simplified model of thermoflow in buildings is given in Figure 1. This single zone 
model is discussed in detail elsewhere3. Briefly, in Figure 1 the resistances are: R0 = conductive 
shell resistance including exterior film coefficients, Ra = film resistance of the interior surfaces 
and Rv = effective ventilation resistance. The sources are: Tsa= averaged sol-air temperature of 
the external surfaces, Qr=mean radiation on the interior surfaces, Qv= interior air convective 
source and T0 = temperature of the ventilating air. The heat capacitance of the massive elements 
of the building is represented by the capacitor C. The dependent quantity of interest is the internal 
temperature represented by Ti. In practice some of the resistances will be time dependent since 
e.g. the ventilation rate varies with the hour of the day. In addition, modern ideas of passive 
climate control utilizes concepts such as night cooling and variable resistance. Night cooling is 
used in hot climates with cool night air, where the ventilation rate may be increased during cool 
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hours to absorb some excess heat from the structure. Variable shell resistance is used in cool 
climates to increase interior temperatures by increasing the resistance of the building envelope 
during cold hours and decreasing it during hot hours. Modelling of these techniques imply that 
the network of Figure 1 must be solved under the assumption of variable resistances. 

The governing equation of the network of Figure 1 is: 

(t) + β(t)· x(t) = u(t) (6) 
with 

x = C · 

u = 

and 

β = 

A simple explicit method for solving (6) is: 
xk + 1 = (1–∆T · βk + 1)· xk + ∆T· uk (7) 

where ∆T is the time step. If cyclic conditions are imposed i.e. u0 = uN , Β0 = ΒN and x0 = xN (3) 
is applicable and the initial value is found immediately. 

x0= (8) 

The iteration (7) converges in practice if the step size is chosen so that ∆T·βk <2 although the 
condition will not necessarily guarantee convergence in the time dependent case4. If the backward 
difference is used an unconditionally stable system is obtained. For buildings the time-constant 
Τ = 1/β lies in the range 2 to 200h so that a time step of 15min may be used. 

Despite the extreme simplicity of the method it has been successfully applied as a design tool 
for a wide range of buildings of different construction. The simplicity of the model enables quick 
solutions on cheap computers even with complicated climate control systems. The diversity of 
buildings and the wide range of parameter values to which the method has been applied is 
indicated in Tables 1 and 2. 

Table 1 Numerical values of circuit parameters for some typical building zones. The value of the time-constant is given 
for ventilation rates of 0.1 and 30 ach (air changes per hour) 

Building 

Shed 
Hut 
Factory 
Room 
Shop 
Office 

Thermal parameter 

C 
[kJ/K] 

416521.70 
1822.77 

1593885.15 
3968.47 

45398.16 
61780.04 

Ro 
[K/kW] 

0.0656 
33.8771 
0.0422 

29.0070 
2.7359 
8.3667 

Ra 
[K/kW] 

0.0650 
2.0330 
0.0060 
2.0740 
0.3150 
1.4180 

Rv 
[K/kW] 

9.934 
1333.333 

0.335 
1333.333 

69.231 
878.049 

ach = 0.1 

τ 
[h] 

7.54 
16.73 
16.62 
31.30 
33.19 

142.23 

ach = 30 

Rv 
[K/kW] 

0.0331 
4.4444 
0.0011 
4.4444 
0.2308 
2.9268 

τ 
[h] 

4.55 
2.75 
2.70 
5.87 
5.74 

49.08 
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Shed 

Hut 

Factory 

Room 

Shop 

Office 

Floor 
area 
[m2] 

763 

9 

7755 

11 

102 

14 

Table 2 Some construction data of the building zones in Table 1 

Shell 
area 
[m2] 

1290.8 

48.3 

13292 

19.5 

185.7 

9.9 

Volume 
[m3] 

3624 

27 

107500 

27 

520 

41 

Window 
area 
[m3] 

12.6 

1.76 

1335 

1.79 

24.92 

3.91 

Roof 

exposed 
steel 
exposed 
steel 
airspace 
fibreboard 
exposed 
steel 
glass wool 
exposed 
steel 
airspace 
glass wool 
gypsum 
exposed 
slate 
glass wool 
airspace 
fibreboard 
not 
exposed 
concrete 

Floor 

concrete 
on ground 
concrete 
on ground 

concrete 
on ground 

carpet 
concrete 
on ground 

PVC 
concrete 
suspended 

PVC 
concrete 

Walls 

steel 

double 
brick 

steel 
glass wool 

brick 
cavity 
brick 

double 
brick 

brick 
cavity 
brick 

Results obtained for a typical office is indicated in Figure 2. It shows the interior temperature 
obtained when the ventilation is increased during the cool night hours, together with the exterior 
air-temperature. The numerical values of the circuit elements for the office are supplied in Table 1 
with some physical details of the zone in Table 2. Note in Figure 2 how the increased ventilation 
during the night succeeds in lowering the daytime temperature. 
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To obtain a practical evaluation of the accuracy of the method, the approximate solution can 
be compared with the exact solution in a special case. We take the case where β(t) is constant 
everywhere, except at two points where the value jumps discontinuously i.e. β(t) given by 

β(t) = when (9) 

The exact solution for a constant β and a sinusoidal input function given by 
u = U ·(1 + m·cos ω[t + t0]) is from the Laplace transform: 

x(t) = x(0) · e–βt + A(t) (10) 

where 

A(t) = 

α(t) = cos(ω[t + t0] — φ) — cos(ωt0 — φ) ·e – βt 

and x(0) is the initial value, tan φ = ω/β. Next, apply this solution to the intervals in (9) and set 
x(0)=x(T), and x(T1) continuous. The solution for x (0)=x 0 is: 

x0 = (11) 

with 

A0=A(T1) and A1 = A(T1 – T1). 
The subscripts 0 and 1 of A and β in (11) refer to the first and second intervals in (9) respectively. 
Figure 3 shows the error between analytic solution (10), (11), and approximate numerical solution 
(7), (8), for a building with relatively short time-constant. The building (an agricultural shed) 
has a time-constant of 7.5 hours (see Tables 1 and 2) with closed windows. This is a very short 
thermal time-constant and a practical sampling rate would be 15min, but to show the robustness 
of the method, a sampling periof of 1 h is used in the calculation. The ventilation rate jumps 
from 0.1 to 30 ach resulting in a time-constant jump from 7.5 to 4.5 h, the jump occurring at 
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T1 = 11 h. The forcing functions used for the calculation are: 
Tsa= 20 + 10 ·cos (2π/24 ·t)°C 
T0 = 20 + 5 · cos(2π/24 · t)°C 

and 
Qc = Qr = 0kW 

The Figure shows the error obtained by a sudden increase in the number of air changes as well 
as a sudden decrease of similar strength. In this worst case, βmax · ∆T = 1/4.5, the temperature 
error is less than 1°C. The error is decreased to insignificant levels by decreasing the sampling 
period to 15min, with linear interpolation between sampling points. The calculations were 
repreated for a building with a longer time-constant (office block), where the time constant 
jumped from 142 to 49 h when the ventilation rate jumped from 0.1 to 30 ach. The error between 
the analytic and approximate solutions in this case, ∆T= 1 h, βmax · ∆T= 1/49, was less than 0.1°C. 

EFFICIENCY OF THE METHOD 
It is difficult to give a general discussion of the relative efficiency of the method since it varies 
considerably from application to application. In buildings, thermal time-constants may be as 
long as 200 h or more. Many existing programs assume an arbitrary initial value and integrate 
until the cyclic condition is satisfied. A rule of thumb is that the transient response will be 
negligible after 5 time constants, that is after 1000 h or approximately 42 cycles. An efficient 
shooting method will require a minimum of three cycles. In contrast, the solution given here 
requires effectively two cycles to obtain the full solution. 

An alternative procedure would be to solve the system simultaneously for every time step 
through a full cycle. For the building thermal analysis example above this will require the 
simultaneous solution of 96 equations if the single order approximation outlined above is 
followed, with a time step of 15min. Obviously the system of equations would be very sparse 
and could be solved efficiently provided the minimum bandwidth representation could be found5. 
In this case, once the minimum bandwidth representation has been found, the number of 
computations required would be proportional to N ·w2 where N is the number of equations and 
w the minimum bandwidth. In general the solution obtained through (3) also requires 
computations proportional to N so that it appears to be of the same order of efficiency, however, 
it is not required to find the minimum bandwidth representation first. In addition, it only requires 
computer storage of the state for two values of the index k in (3), while the sparse matrix method 
requires storage for all values of k. 

CONCLUSION 
Cyclic systems have many applications in heat transfer and fluid flow. They can be efficiently 
solved with the method presented here if the system is linear or can be linearized. The method 
caters for time dependent systems as well as variable step-size systems. The efficiency of the 
solution and the inherent error control of the cyclic system can be exploited by specifying cyclic 
boundary conditions even if the physical system is only approximately cyclic. 
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